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Abstract
We show that an nth root of the Walsh–Hadamard transform (obtained from
the Hadamard gate and a cyclic permutation of the qubits), together with two
diagonal matrices, namely a local qubit-flip (for a fixed but arbitrary qubit) and
a non-local phase-flip (for a fixed but arbitrary coefficient), can do universal
quantum computation on n qubits. A quantum computation, making use of
n qubits and based on these operations, is then a word of variable length, but
whose letters are always taken from an alphabet of cardinality three. Therefore,
in contrast with other universal sets, no choice of qubit lines is needed for the
application of the operations described here. A quantum algorithm based on
this set can be interpreted as a discrete diffusion of a quantum particle on a
de Bruijn graph, corrected on-the-fly by auxiliary modifications of the phases
associated with the arcs.

PACS number: 03.67.−a
Mathematics Subject Classification: 81P68

1. Introduction

The study of universality in quantum computation goes back to [3]. In the circuit model,
universality has been considered by a number of papers (see [1, 9] and the references therein).
Probably, the simplest universal set of gates consists of the Hadamard gate H together with the
Toffoli gate T [9]. Of course, in order to have universality, we need the freedom of applying
H and T to arbitrary qubits of the computer: H to any qubit and T to any three qubits. In fact,
out of measurement processes, every computational step is induced by a unitary, obtained by
tensoring together H’s, T’s and identity matrices. The number of different unitaries obtained
in this way is then a function of the number of qubits.

In this paper, we define a universal set of unitary quantum operations depending on the
computational space of the machine. This means that the unitaries change whenever the total
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number of qubits changes. Since the operations act globally on all qubits, they do not require the
choice of qubit lines at each computational step. This is in contrast to standard finite universal
sets (e.g., H and T ) where the gates remain fixed but may be applied to varying choices of
qubit lines. The set defined here is composed by an nth root of the Walsh–Hadamard transform
(constructed from the Hadamard gate and a cyclic permutation of the qubits), and two diagonal
matrices: a (local) qubit-flip (for a fixed but arbitrary qubit) and a (non-local) phase-flip (for
a fixed but arbitrary coefficient). To prove that the defined set is universal on n qubits, we
reduce it to H and T, acting on any qubit and any three qubits. The characteristic property of
the set is that the choice of the qubits to which apply H and T is not reflected into the structures
of the unitaries. This observation would like to be a justification to the title of the paper.
Of course, the set described here is inconvenient from the physical implementation point of
view, because it requires nonlocal interaction between qubits (which is physically expensive).
However, it may be useful to remark that the set provides a mathematical framework, in
which doing universal quantum computation is constructing words whose letters are unitaries
(two of which commute) taken from an alphabet of cardinality three. So, the outcome of a
computation depends on the length of the word and the order of the letters. This has some
flavour that reminds of quantum finite state automata and other sequential machines (see e.g.
[4, 7]).

The remainder of this paper is organized as follows. In section 2, we give some preliminary
definitions. In section 3, we formally state and prove the main result. This is done by proving
universality with a reduction to {H, T }. It is not difficult to verify that the nth root of the
Walsh–Hadamard transform respects the topology of the de Bruijn graph. Namely, the ij th
entry of this unitary is nonzero if and only if there is a directed edge from the vertex labelled
i to the vertex labelled j , in the de Bruijn graph on 2n vertices. In section 4, in virtue of this
observation, we point out that any quantum algorithm can be seen as the discrete diffusion of
a quantum particle on a de Bruijn graph, corrected on-the-fly by a qubit-flip and a phase-flip,
both fixed but arbitrary. This reminds of the context of discrete quantum walks [2] or the
processes studied in [6]. A natural open question would be to prove that the nth root of
the Walsh–Hadamard transform and a phase-flip (for a fixed but arbitrary coefficient) form a
universal set.

2. Definitions

In this section we introduce some preliminary definitions.

Definition of Vn. We denote by Vn a square matrix of dimension 2n such that [Vn]i,j ∈ {
0,± 1√

2

}
and with exactly the following nonzero entries:

[Vn]1,1 = [Vn]1,2n−1+1 = [Vn]2,1 = 1√
2
,

[Vn]2,2n−1+1 = − 1√
2
,

[Vn]3,2 = [Vn]3,2n−1+2 = [Vn]4,2 = 1√
2
,

[Vn]4,2n−1+2 = − 1√
2
,

...

[Vn]2n−1,2n−1 = [Vn]2n−1,2n = [Vn]2n,2n−1 = 1√
2
,

[Vn]2n,2n = − 1√
2
.

(1)
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The matrix Vn is real-orthogonal and it is an nth root of Hn := H⊗n, where H is the 1-qubit
Hadamard gate:

H := 1√
2

(
1 1
1 −1

)
. (2)

For example,

V2 = 1√
2




1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1


 (3)

and V 2
2 = H . An alternative and more direct definition of Vn can be given as follows. Let Sn be

the full symmetric group on the set {1, 2, . . . , n}. We denote permutations of length n as ordered
sets. For example, the elements of S3 are (1, 2, 3), (1, 3, 2), (3, 2, 1), (2, 3, 1), (2, 1, 3) and
(3, 1, 2). With an abuse of our notation, their regular permutation representations are denoted
in the same way. The matrix Vn is defined as

Vn := P · (H ⊗ I⊗n−1), (4)

where

P = (1, 3, . . . , 2n − 1, 2, 4, . . . , 2n). (5)

This permutation is nothing but a cyclic-shift of the qubits:

P : |a1a2 . . . an〉 −→ |an−1a1 . . . an−2〉. (6)

This explains why V n
n = Hn (Hn := H⊗n). It is easy to verify that equations (1) and (4)

define the same matrices. Notice that, when n = 2, the permutation P is the Swap-gate:

(1, 3, 2, 4) =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 . (7)

Definition of Pn(k). Let us denote by Pn(k) the 2n × 2n matrix defined by

[Pn(k)]i,j :=



0 if i �= j ;
−1 if i = k with k ∈ {1, . . . , 2n};
1 otherwise.

(8)

The matrix Pn(k) is the Pauli operator

Z =
(

1 0
0 −1

)

on the nth qubit controlled by all other qubits 1, 2, . . . , n − 1 and then conjugated by the
permutation that interchanges dimensions k and 2n. For example,

P2(3) =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


 = I2 ⊕ XZX, (9)

where X is the Pauli operator

X =
(

0 1
1 0

)
.
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Definition of Fn(k). Let us denote by Fn(k) the 2n × 2n matrix defined by

[Fn(k)]i,j :=



0 if i �= j ;
−1 if the kth qubit is1;
1 otherwise.

(10)

The matrix Fn(k) is the Pauli operator Z acting on the kth qubit and the identity on all other
qubits. For example,

F2(1) =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


 = I ⊗ Z and F2(2) =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 = Z ⊗ I.

(11)

3. Main result

In this section we prove the following theorem.

Theorem 1. The set

B = {Vn, Pn(i), Fn(j)}, (12)

for fixed but arbitrary i ∈ {1, . . . , 2n} and j ∈ {1, . . . , n}, is universal for quantum
computation on n qubits.

By this theorem, any quantum computation in the circuit model can be seen as a word
whose letters are taken from the alphabet B.

The Toffoli gate T is the three-qubit gate defined as T : (a, b, c) −→ (a, b, ab ⊕ c),
where ⊕ denotes addition modulo 2 and a, b, c ∈ {0, 1}. The matrices defined by the Toffoli
gate are then a special kind of transposition. If we label the states of the computational basis
in lexicographic order, the matrices defined by the Toffoli gate on 3 qubits are


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0




,




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0




and




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0




. (13)

The set B ′ = {H, T } is universal for quantum computation [1, 9]. We prove theorem 1
by showing that the set B is equivalent to the set B ′, once the number of qubits has been fixed.
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In order to verify this equivalence, we show that any expression made by the tensor product
of H, T and the 2 × 2 identity matrix I2 corresponds to a sequence of the three elements of B
defined in the statement of the above theorem. We will consider the set

Dn := {Pn(i) : 1 � i � 2n}. (14)

Lemma 2. The set A = Vn ∪ Dn is universal for quantum computation on n qubits.

Proof. By the definition of Vn (equation (4) above), we have

P −1 · Vn = H ⊗ I⊗n−1, (15)

where

P −1 = (1, 2n−1 + 1, 2, 2n−1 + 2, 3, . . . , 2n−1, 2n) = (1, 3, . . . , 2n − 1, 2, 4, . . . , 2n)−1.

This means that if we can construct the matrix P −1 then we can also construct the Hadamard
gate. First, observe that

V −1
n = V 2n−1

n = V T
n ,

since

V 2n
n = V n

n V n
n = HnHn = I⊗n.

The matrix V T
n can be then obtained directly from Vn. The nonzero entries in the last two

rows of Vn are

[Vn]2n−1,2n−1 = [Vn]2n−1,2n = [Vn]2n,2n−1 = 1√
2
,

[Vn]2n,2n = − 1√
2
.

The nonzero entries in the last two columns of Qn = Pn(2n) · V T
n are

[Qn]2n−1,2n−1 = [Qn]2n,2n−1 = [
Pn(2

n) · V T
n

]
2n−1,2n = 1√

2
,

[Qn]2n,2n = − 1√
2
.

Since

H · 1√
2

(
1 1

−1 1

)
= X,

it follows that

VnQn = VnPn(2
n)V T

n = I2n−2 ⊕ X = (1, 2, . . . , 2n − 2, 2n, 2n − 1), (16)

which is indeed the Toffoli gate. Now, given that

S2n = 〈(1, 2, . . . , 2n − 2, 2n, 2n − 1), (2, 3, . . . , 2n, 1)〉,
if we can construct the cyclic permutation (2, 3, . . . , 2n, 1) then we will have the full symmetric
group S2n . If we can construct S2n then we will get P −1 and all the permutations that we need
for applying H and T to arbitrary qubits. The permutation (2, 3, . . . , 2n, 1) can be constructed
with the following procedure (most probably not optimal):

(i) Let M1 = HnFn(n)Hn = X ⊗ I⊗n−1. By applying elements from Dn, transform the
bottom-left block of M1 into the diagonal matrix dia(p1, . . . , p2n−3 ,−p2n−3+1, . . . ,

−p2n−2), where pi = (1,−1). Let M ′
2 be the matrix obtained in this way.
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(ii) Let M2 = V −1
n M ′

2Vn. By applying elements from Dn, transform the top-right block
of M2 into the identity matrix and the bottom-left block into the diagonal matrix
dia(p1, . . . , p2n−4 ,−p2n−4+1, . . . ,−p2n−3).

(iii) Repeating the second step n − 2 times one gets the permutation matrix (2, 3, . . . , 2n, 1).
(This can be easily checked with any computer algebra system.)

An example with three qubits may help to clarify the procedure:

H3(1, 2, 3, 4, 5, 6, 7, 8)H3 = (5, 6, 7, 8, 1, 2, 3, 4),

V −1
3 (5, 6, 7, 8, 1, 2, 3, 4)V3 = (3, 4, 5, 6, 7, 8, 1, 2),

V −1
3 (3, 4, 5, 6, 7, 8, 1, 2)V3 = (2, 3, 4, 5, 6, 7, 8, 1).

The notation is easily explained:

(
5, 6, 7, 8, 1, 2, 3, 4

) =




0

∣∣ 1 0 0 0∣∣ 0 1 0 0∣∣ 0 0 1 0∣∣ 0 0 0 1
1 0 0 0

∣∣
0 −1 0 0

∣∣
0 0 −1 0

∣∣
0 0 0 1

∣∣
0




.

By the above constructions, we have the following fact: the matrix group G = 〈Vn,Dn〉
has the regular permutation representation of S2n as a subgroup. Then T, obtained with
equation (16), can be applied to any three qubits; H, obtained from equation (15), can be
applied to any qubit. Since B ′ = {H, T } is universal, the lemma follows. �

Lemma 3. The matrix group G = 〈Vn, Pn(i), Fn(j)〉, for fixed but arbitrary i ∈ {1, . . . , 2n}
and j ∈ {1, . . . , n}, contains the set Dn.

Proof. By the definitions,

V k
n Fn(n)V −k

n = (P (H ⊗ I⊗n−1))k · (Z ⊗ I⊗n−1) · (P (H ⊗ I⊗n−1))−k

= P k(H ⊗ I⊗n−1) · (Z ⊗ I⊗n−1) · (H ⊗ I⊗n−1)P −k

= P k(X ⊗ I⊗n−1)P −k

= I ⊗ · · · ⊗ I ⊗ X ⊗ I · · · ⊗ I,

where X is at the kth position of the tensor product. For example, V 1
3 F3(3)V −1

3 = I ⊗ I ⊗ X.
Let H be the matrix group generated by the matrices I ⊗ · · · ⊗ I ⊗ X, I ⊗ · · · ⊗ I ⊗ X ⊗ I,

X⊗I⊗· · ·⊗I . The group H is isomorphic to Z
n
2 (indeed, the above matrices are the permutation

representations of the standard generators of Z
n
2). Since, for every i, j ∈ {1, . . . , 2n}, there is

an element of H sending Pn(i) to Pn(j), we can construct Dn, that is the set of all 2n × 2n

diagonal matrices with entries 1 and −1. We considered Fn(n), but we could also take Fn(j),
for any j ∈ {1, . . . , n}, without loss of generality. �

Theorem 1 is a consequence of lemma 2 together with lemma 3.

4. A relation with de Bruijn graphs

Let � be an alphabet of cardinality d and let �∗
n be the set of all words of length n over �. The

d-ary n-dimensional de Bruijn graph is a directed graph denoted by B(d, n) and defined as
follows [5]: the set of vertices is �∗

k ; there is an arc from i to j if and only if the last n−1 letters
of i are the same as the first n − 1 letters of j . The graph B(2, n) is called (directed) binary
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de Bruijn graph. Note that B(2, n) has exactly two loops: one loop is at the vertex 0 . . . 0;
the other one at the vertex 1 . . . 1. These graphs have important applications in cryptography
and distributed computing. In particular, they provide some of the best-known topologies for
communication networks. For example, the Galileo space probe of NASA used a network
based on a de Bruijn graph to implement a signal decoder [8]. Let Mn be the adjacency matrix
of B(2, n). The rows and the columns of this matrix can be ordered in such a way that

[Mn]1,1 = [Mn]1,2n−1+1 = [Mn]2,1 = [Mn]2,2n−1+1 = 1,

[Mn]3,2 = [Mn]3,2n−1+2 = [Mn]4,2 = [Mn]4,2n−1+2 = 1,

...

[Mn]2n−1, 1
2 2n−1 = [Mn]2n−1,2n = [Mn]2n, 1

2 2n−1 = [Mn]2n,2n = 1.

Tanner [11] pointed out that the matrix Vn is obtained from the matrix Mn by negating the
entries [Mn]2,2n−1+1, [Mn]4,2n−1+2, . . . , [Mn]2n,2n and rescaling Mn by 1√

2
. It is easy to see that

a simple random walk on B(d, n) converges very quickly to uniformity, in fact it is perfectly
mixed after n steps. Simple means that at each vertex the walker chooses to cross an incident
edge by tossing a fair die with d faces. We associate the vertices of B(2, n) with the elements
of the computational basis |0〉 ≡ |0 . . . 0〉, |1〉 ≡ |0 . . . 01〉, . . . , |2n−1〉 ≡ |1 . . . 1〉. For every
|i〉 and |j 〉, there is a diagonal matrix Q ∈ Dn such that HnQHn|i〉 = V n

n QV n
n |i〉 = |j 〉. We

may interpret this process as a discrete quantum walk on B(2, n) induced by Vn and corrected
on-the-fly by an appropriate diagonal unitary with ±1 entries. If the walk is not corrected then
V 2n

n |i〉 = |i〉 for every i, given that Hn is symmetric. The walk on B(2, n) is perfectly mixed
at the nth step, but it can be driven with probability 1 to any vertex in exactly 2n steps. For
example, the following is an algorithm that takes the state |0〉 to the state |2n − 1〉 in 2n steps:

V n
n |0〉 = |+〉⊗n, F1(1)⊗n|+〉⊗n = |ψ〉, V n

n |ψ〉 = |2n − 1〉.
(A curiosity: the positions of the minus sign in the state |ψ〉 correspond to the numbers with
an odd number of 1’s in their binary expansion (A007413 [10]).) A generalization for any |i〉
and |j 〉 is straightforward.
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